以人为本 服务至上 科学管理 勤政高效

物理所在高钠含量P2层状氧化物正极材料研究取得新进展

  

  层状金属氧化物(NaxTMO2, TM=过渡金属)不同的组成带来的复杂结构化学对层状堆积结构、钠离子电导率以及氧化还原活性起到决定性作用,为功能性材料的研究开辟了新途径。NaxTMO2主要包括O3和P2两种结构,其中P2结构因为开放的三棱柱扩散通道而具有更快的Na+扩散速率。但是P2型结构初始充电容量较低(<80 mAh g-1),平均电压小于3.2 V,在充电到更高电压时会经历P2到O2或OP4/’Z’的相变而导致循环稳定性下降。

  钠含量是影响P2结构稳定性的关键因素。在充电过程中,随着钠的脱出导致TMO2层滑移而发生P到O的相变。因此,如果在充电过程中P2结构中钠含量充足,则P2结构也能在充放电过程中保持稳定。同时,P2结构中更高的钠含量使得TM的平均价态更低,从而能在较低的电压下实现更高的储钠容量。因此,系统深入地探究P2相层状氧化物中的钠离子含量对材料结构和性能的影响是非常重要的。

  中国科学院物理研究所/北京凝聚态物理国家研究中心清洁能源重点实验室E01组博士生赵成龙在胡勇胜研究员及荷兰代尔夫特理工大学Marnix Wagemaker教授指导下,研究了P2型层状氧化物中的潜在最高钠离子含量,并观察到高钠含量能够改善结构的稳定性,同时能促使低价阳离子被氧化为高价态。对于钠离子P2相材料,在4.0 V的电压下实现Ni2+向Ni4+的转变是非常重要的。一般情况下,Ni2+向Ni4+的转变会发生在大约4.2 V以上,这样的高电压通常会伴随结构演变、电解液分解和氧离子氧化造成的氧损失等,致使材料在循环过程中遭受性能的恶化。在P2相结构中引入高的钠含量,会降低结构中过渡金属离子的平均价态,这会促使结构中最低氧化态的过渡金属向其高价态转变,实现更高的容量。在脱钠过程中,P2相结构中大量的钠离子能够在很大程度上提高结构的稳定性。

  对于低钠含量的P2相正极材料,充电时当结构中的钠离子含量少于1/3左右时,原始的P2相结构将会转变为O2相或OP4/“Z”相。在相同钠离子脱出时,高的钠含量可以使得结构中留有更多钠,这会减弱毗邻过渡金属层之间的排斥作用,抑制过渡金属层滑移。对于高钠含量的P2-Na45/54Li4/54Ni16/54Mn34/54O2材料,在充电过程中没有出现P到O相之间的转变;新形成的P2相和原始P2相具有相同的结构,且具有更大的钠离子层间距,这将会在一定程度上促进钠离子的扩散,实现更高的可逆性。结果表明,在2.0-4.0 V电化学窗口内,该材料能够实现Ni2+到Ni4+的多电子转移反应,显示出~100 mAh g-1的高的可逆容量;且循环稳定。对比于传统的低钠含量的P2相材料,高钠含量P2相材料在一定程度上为研发新的电极材料提供了电子结构和化学结构上的新见解。

  该研究结果近日以“Revealing High Na-Content P2-Type Layered Oxides for Advanced Sodium-Ion Cathodes”为题发表在Journal of the American Chemical Society上。

  文章下载链接:Chenglong Zhao, Zhenpeng Yao, Qidi Wang, Haifeng Li, Jianlin Wang, Ming Liu, Swapna Ganapathy, Yaxiang Lu, Jordi Cabana, Baohua Li, Xuedong Bai, Alán Aspuru-Guzik, Marnix Wagemaker, Liquan Chen, and Yong-Sheng Hu. Revealing High Na-Content P2-Type Layered Oxides as Advanced Sodium-Ion Cathodes. J. Am. Chem. Soc. 2020, 142, 12, 5742–5750. https://pubs.acs.org/doi/full/10.1021/jacs.9b13572

  相关工作得到了国家自然科学基金(51725206、51421002)、中国科学院A类战略性先导科技专项(XDA21070500)、北京市科委(Z181100004718008)和北京市自然科学基金-海淀原始创新联合基金(L182056),以及国家公派留学基金委员会的支持。

  图1 (a) 高钠含量P2氧化物在脱钠过程中的结构演变机理;(b) 低/高钠含量P2氧化物的电子结构;(c) P2氧化物晶体结构;(d) dO-Na-O和dO-TM-O在P2和O3型化合物中的比值

  图2 (a) Na45/54Li4/54Ni16/54Mn34/54O2的XRD谱图;(b) [010]方向的HAADF和ABF-STEM;(c) Na, Mn, Ni和O的EELS谱

  图3 (a) Na12-xLiNi3Mn8O24中Li/Ni/Mn的排列;(b) Na12-xLiNi3Mn8O24-LiNi3Mn8O24中的相稳定性

  图4 (a) Na2/3Ni1/3Mn2/3O2在0.15C(~22 mA g-1),2-4 V的充放电曲线:(a) Na2/3Ni1/3Mn2/3O2, (b) Na45/54Li4/54Ni16/54Mn34/54O2; (c) Na45/54Li4/54Ni16/54Mn34/54O2的倍率性能;(d) Na45/54Li4/54Ni16/54Mn34/54O2的放电容量保持率

  图5 (a) Na45/54Li4/54Ni16/54Mn34/54O2在2-4.6 V,0.15 C的充放电曲线;(b-c) Na10-xLiNi3Mn8O24(0≤x≤7)不同脱钠结构的形成能;(d-e) Na10LiNi3Mn8O24到Na3LiNi3Mn8O24脱钠过程中间相的Ni和O的磁化和氧化态;(f-h) x=0,x=5和x=7时Ni 3d t2g,Mn 3d t2g和O 2p的电子结构演变

  图6 (a) 0.05 C,充电至4.6 V的in-situ XRD谱图;(b) 0.5 C,2-4 V的in-situ XRD谱图;(c) 高钠含量的P2结构中Na+的迁移途径;(d)分子动力学模拟得到的扩散系数阿伦尼乌斯点

分享到 :